Telegram Group & Telegram Channel
Что делать, если дисперсия некоторого признака почти нулевая? Как поступить с таким признаком?

▶️ Нулевая дисперсия означает отсутствие разброса в значениях этого признака. Он почти не изменяется для всех наблюдений. Такие признаки часто считаются малоинформативными.

✔️ Наиболее очевидное решение здесь — удалить такой признак. Его отсутствие вряд ли негативно скажется на производительности вашей модели. Если вы в этом не уверены, то можно попробовать оценить влияние данного предиктора на производительность, то есть создать модели с ним и без него и сравнить их.

Есть и другие соображения по этому поводу. Например, рассматриваемый признак принимает два значения: ноль и единицу. В основном он реализуется через нули, а единицы встречаются несколько раз. При этом каждый раз, когда данный предиктор принимает значение 1, мы точно знаем, что объект принадлежит к определённому классу. То есть признак можно считать информативным. Одно из решений для такого предиктора — собрать больше данных, но это не всегда возможно. Также можно рассмотреть использование байесовских моделей.

Так, принимать решение об удалении какого-либо признака следует после внимательного изучения данных.

#машинное_обучение
#статистика



tg-me.com/ds_interview_lib/225
Create:
Last Update:

Что делать, если дисперсия некоторого признака почти нулевая? Как поступить с таким признаком?

▶️ Нулевая дисперсия означает отсутствие разброса в значениях этого признака. Он почти не изменяется для всех наблюдений. Такие признаки часто считаются малоинформативными.

✔️ Наиболее очевидное решение здесь — удалить такой признак. Его отсутствие вряд ли негативно скажется на производительности вашей модели. Если вы в этом не уверены, то можно попробовать оценить влияние данного предиктора на производительность, то есть создать модели с ним и без него и сравнить их.

Есть и другие соображения по этому поводу. Например, рассматриваемый признак принимает два значения: ноль и единицу. В основном он реализуется через нули, а единицы встречаются несколько раз. При этом каждый раз, когда данный предиктор принимает значение 1, мы точно знаем, что объект принадлежит к определённому классу. То есть признак можно считать информативным. Одно из решений для такого предиктора — собрать больше данных, но это не всегда возможно. Также можно рассмотреть использование байесовских моделей.

Так, принимать решение об удалении какого-либо признака следует после внимательного изучения данных.

#машинное_обучение
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/225

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA